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Random walk theory is used to calculate the line spread function (LSF) of photons as they cross
the midplane of a slab of finite thickness. The relationship between the LSF and the photon
transit time in transillumination time-resolved experiments is investigated. It is found that the
LSF is approximately Gaussian distributed, with a standard deviation, o, which can be used as
a criterion of the spatial resolution of the imaging system. Results are substantiated by com-
parison with actual data in the literature. Any given resolution can be improved by reducing the
excess transit time At, but heterogeneity of the scattering medium and low levels of detected
light enormously complicate the achievement of subcentimeter spatial resolution. The latter
point is discussed by using optical parameters of breast tissues for visible and near-infrared

radiation (NIR) light.
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I. INTRODUCTION

There is great enthusiasm in the opti~s community to use
nonionizing visible or near infrared radiation to image bi-
ological targets, such as tumors or internal regions of hem-
orrhage, that are hidden in optically thick turbid tissues.'”
In particular, special attention has been devoted to devel-
oping a method to screen for breast cancer. Since in these
cases conventional transillumination often provides only
very poor resolution,® several research groups have pro-
posed employing time-resolved*™® or frequency-resolved’
techniques. At this stage of research, various
experiments'®'? and numerical simulations'>'* have been
performed to evaluate critical aspects of such techniques,
including the spatial resolution, signal to noise ratio, and
detectability of hidden objects.

Collimated light transmitted through thick tissues is
scattered many times within a distance of 1 mm (Refs. 15
and 16) and becomes so diffuse by depths of more than a
centimeter that deep abnormalities with strong absorption
are poorly resolved. Time-resolved transillumination imag-
ing seeks to improve resolution by selecting those photons
which have shorter path lengths (early arrival times) and
hence smaller deviations from the optical axis (straight
line path between the source and the detector). The spatial
spread of light in a plane parallel to the surface can be used
as a criterion of the spatial resolution of an absorbing ob-
ject at that depth. This dispersion in photon paths from the
optical axis depends on the gating time (path length selec-
tion) as well as on the optical properties of the medium.
For small-area illumination and detection, the spread of
the light is maximal at the middle of the slab. Hence, the
worst resolution occurs when the hidden target is located
at the midplane.

To compute the spread of light at the middle of a slab,
we use random walk models which were developed in our
previous investigations of diffusion of light in tissue.!”2° In
Sec. II, we start by analyzing a random walk on an equiv-
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alent isotropic scattering lattice bounded by two absorbing
planes. In previous publications we showed how the lattice
parameters can be expressed in terms of “transport cor-
rected” cross sections which suitably account for the an-
gular anisotropy in the scattering process.!” An expression
for the spread at midslab of those photons injected nor-
mally into the medium and detected on the optical axis
opposite the point of injection is derived. In Sec. III we
compare our theoretical findings with previously published
experimental data.?! Results are discussed in Sec. IV.

Il. THEORY

We now use photon migration on a discrete lattice to
compute the spread function at the midplane of a slab of
thickness N. We derive the joint probability, I'( p,An), that
a photon will cross the midslab at a radial distance p units
from the point of insertion, and that it will take a total of
n=N+ An steps, given that it emerges at a detector located
coaxially with the point of insertion (see Fig. 1). The
quantity An=n—N represents the number of steps by
which the path exceeds the minimum needed to traverse a
slab of a given thickness. The basic methodology of the
random walk theory that we employ is described
elsewhere. !

First, we define a conditional probability, U,,(p), of
those photons which have crossed the midplane of the slab
at the point (x,y,N/2) after / steps and have been trans-
mitted through the slab in » steps in total. Since we are
interested in those photons which arrive at the point
(0,0,N), this conditional probability can be written as

N
0,0,N —1|x,p, 7| (1)

1 N
U,,,,=g Qi x.p, 5 [0,0,1

Qn—-l—l

where the first term of the product is the probability of a
photon being at (x,y,N/2) after / steps having started at
(0,0,1) on the first step, and the second term is the prob-
ability of photons being transmitted through the slab to the
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FI1G. 1. Schematic representation of photon paths in a transillumination
experiment. The spread of light is maximal at the midslab position.

point (0,0,N—1) in n—1—/ steps having initially been at
the midplane [i.e.,, (x,,N/2)]. We are interested in the
radial dispersion of photons when they are at the midplane
(depth z=N/2). This quantity can be determined from the
probability density obtained by integrating U, ,(p) over /

Wo(p)= fo" Uyn(p)dL. @)

Because we are considering an optically homogeneous

medium, Q, can be written in general form as follows:2°
Qillpz|0,29] = . 2 [Plpz—zy+2kN)
— P p,z+2y+2kN)], (3)

where P)(p,z) is an infinite space propagator that is an
even function of p and z. Hence, U,, can be written as

1 & N N
V=g 2 [Pl(p, 3 142kN )= p 741
i N
+2kN) 2 [Pn—l—l(ny——1+2mN)
3N
—Pn_l_l(p,7—1+2mzv)]. @

But, because the summations extend from (— o) to
(+ « ), and because P)(p,z) is an even function of z,
it is a straightforward matter to show that the last
sum in the above equation can be expressed as
2y P fp,3N/2—14+2mN)=25__ P, _(p,

N/2+1+2mN). Hence, W,(p) may be written as

1 [n-t N
wapr=g [ 0fxn 7 00|

N
XQn—l—l x,ys.i |0,0,1]dl, (5)
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which has the form of a convolution integral. W ,(p) thus
can be calculated according to

W, (p) =t L ([0 p,z]0,1)]%), (6)

where Qs is the Laplace transform of the probability Q,,
and .Z ! denotes the inverse transform evaluated at the
time point n—1.

We use, for the infinite space propagator, the expression

_3[p2+22]) 7

3/2
Plp2)= (msl) e"p( 241

The choice of Eq. (7) is based on the following consider-
ations. Let us examine the value /=N’, where N’ is the
minimum time (minimum number of steps) necessary for
a photon to reach a plane located at z=z'. Clearly, if
A]=I—N" is zero, then Q)(p,z|0,zy) =8(p)6(z—2') in ac-
cord with Egs. (3) and (7). The reason for using the index
Al in Eq. (7) is that we are interested only in the disper-
sion of the photons relative to those photons which travel
directly to the plane in minimal time. The central limit
theorem then allows us to approximate this function by a
Gaussian form. In Eq. (5) the variable n—1 similarly
should be taken to be An. We thus find that Q, may be

expressed as?2
a(k)
eXp| — 37

© 3 3/2
0=%| X (2m1)

k=—o

{2

(3 32 a \V2
Y z ( ) e——2[a1(k)s]l/2
217) e o [ \ai(k)
a \\2 \
_ ~2[ay(k)s)!
(az(k)) « ] ®
where
31, [N 2
al(k)=-2— [p +[5——1+2kN] ], 9)
and
3 ) N 2

Finally, we note that W,,(p) can be viewed as the joint
probability I'(p,An) as previously defined. Hence, after
taking the inverse Laplace transform required by Eq. (6),
we find the following expression for I'(p,An):
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In order to express Eq. (11) in real time and space as a
function of the effective (isotropic-equivalent) scattering
cross section, X¥, the following substitutions have to be
made:"’

3¥d ApeS¥cA ¥
= , =27 t, = ,
o A= =T

where d and r are, respectively, the actual thickness and
distance and c is the speed of light in tissue. The quantity
At is the excess time by which a photon is delayed in
reaching the detector when compared with the time of
flight through the slab without any scattering. With the
substitutions given in Eq. (12), the expression given in Eq.
(11) can be viewed as the point spread function of light
(PSF) in the midslab for an excess time of flight equal to
At. Thus, with a constant difference in amplitude, Eq. (11)
is also the line spread function (LSF) in the midslab. The
latter is the spread of a point source due to the scattering
properties of a medium, when viewed in two dimensions.

(12)

Hi. RESULTS
A. Theoretical results

There are several ways to characterize the spatial reso-
lution of an imaging system. One common way is by mea-
suring the width of the LSF, for which the full width at
half maximum (FWHM) is 2.350 if the LSF is Gaussian
distributed with a standard deviation, 0. Whereas the ex-
pression given in Eq. (11) has a very complicated form,
our computation indeed shows that it is well fitted by a
Gaussian distribution, particularly for An less than the
mean transit time. Figure 2 shows the line spread functions

F1G. 2. The line spread I'(p,An), calculated according to random walk
theory by Eq. (11). The lines through the data points are Gaussian fits
used to obtain values for ¢. The value of the thickness here is taken to be
N=72.
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in the midplane of thickness N=7.2 for several values An
where the lines are least square fits of a Gaussian to these
results.

We followed the same methodology to compute the
standard deviation of the fitted Gaussian to determine the
LSF for different thickness (N=7.2, 11, 21, 31, 41). In
Fig. 3, the resulting standard deviations, {¢}, are shown as
a function of An for various thickness. The interesting re-
sult is that the dimensionless spatial resolution is indepen-
dent of the optical thickness & and only depends on the
excess number of steps An. Furthermore, data points can
be fitted by a power law. The resulting fit gives

0=0.406(An)'"?, (13)

where o is expressed in units of mean effective scattering
length, 2}"“‘. By using the substitutions given in Eq. (12),
the standard deviation of the LSF becomes, in terms of real
distance

cAt 172
Ax,=0.406(—) .

S* (14)

Alternatively, if one were to use the full width at half
maximum (FWHM) or full width at tenth maximum
(FWTM) as a measure of the resolution, the multiplicative
constant in the above expression would be, respectively,
0.94 or 1.17.

It is seen from Eq. (14) that any desired resolution is
achievable by choosing the excess transit time, Az, to have
a sufficiently small value. Furthermore, the theoretical spa-
tial resolution is independent of the actual thickness of the
slab, but for a given At the resolution is inversely propor-
tional to the square root of scattering cross section. The
latter inference may seem counterintuitive until one real-
izes that photons which scatter in a medium with small
X¥* (i.e., large mean effective free path) typically will de-
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FI1G. 3. The standard deviation, o, as a function of excess numbers of
steps, An. The solid line is a power law fit to the data points, o~ (An)'/2,
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F1G. 4. Comparison between our theoretical calculations of spatial reso-
lution and Hebden’s experimental results (Ref. 21). Key: (---) spatial
resolution for photons collected at a time At in excess of the minimal
transit time, calculated according to Eq. (15); (O) spatial resolution
calculated from the mean excess transit time (At), obtained by using Egs.
(16) and (15); (*) Hebden’s data.

viate more from the optical axis than those moving in a
highly scattering medium, given that the total path length
from the source to the detector is the same. Note that
although the resolution improves as Az decreases, the
amount of transmitted detected light decreases very rap-
idly (see next section).

B. Comparison with experimental resuits

We now compare our theoretical results with experi-
mental data obtained by Hebden.”' In Hebden’s experi-
ments, a streak camera was used to record the edge re-
sponse function (ERF) obtained by imaging the abrupt
edge of an opaque embedded mask, the photons arriving at
times up to a given Ar were summed, and the resulting
ERF was fit to a functional form by assuming a Gaussian
LSF following Bentzen.”® Instead of using the FWHM of
the LSF, which is equal to 2.35¢, Hebden fit his data to the
FWTM of the apparent LSF for which the resolving power
of the imaging system can be expressed as

Ax 2mo(2¥) ! 17 cAn\'? 5
~Tanm 7 (%) )

These experiments were performed with a blackened
150 mm X 100 mm X 51 mm container filled with an aque-
ous suspension of latex microspheres. By knowing the mi-
crosphere diameter (1.27 um), the concentration
(0.07%), and the refractive index (1.59), it is possible to
calculate from Mie theory the mean cosine of the scattering
angle (g=0.93) and the “transport corrected” scattering
cross section [S*=3 (1—g)=0.2 mm™']. According to
Eq. (11), one can thus compute the LSF and the associ-
ated o for different values of the gating times. In Fig. 4, we
compare the spatial resolution calculated according to Eq.
(15), illustrated by the dotted line, with the experimental
resolution (Ax) obtained by Hebden.?! No adjustable pa-
rameters are used in this comparison.

Although results computed from Eq. (15) fit the exper-
imental data very well for short gating times, the asymp-
totic limit pertaining to experimental dc measurement is
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not well represented. This can be explained by the fact that
the expression given in Eq. (15) pertains to the resolution
at the excess transit time Ar, whereas Hebden’s experi-
ments were performed by integrating the signal up to At. In
the latter case the detected signal is the summation of all
individual intensities for different time windows, so each
time wiindow is weighted by the corresponding intensity.
This is the reason why, for delay times greater or equal to
the mean transit time of photons, the experimentally ob-
served spread of the integrated edge response function
tends to an asymptotic value, viz., that of dc resolution.
Hence, to predict the resolution measured in such experi-
ments, we calculated the mean excess transit time (Ar) for
each time window, and substituted it for the discrete time
At in Eq. (15).

For any distribution I''(n) of path lengths of photons
transmitted through the slab and detected at the optical
axis, the mean number of excess steps for a given maximal
value 7 can be calculated as

" ol (n)dn
(Am) fo

=T Edn (16)

We have found in a previous publication20 that T’ (n) is
given by

\/—3' 1 372
Fim=-= [217(n——2)]

o0
2
X z {e—(S/Z){[(2k+I)L—2] /{n—2)}

k=—

— e~ /DU DL (- D)}y poin, (17)
where p is the absorption per effective scattering length
(2,/2¥%). [Note the integral of '’ (n) represents the trans-
mittance to a detector of unit area located opposite the
point of incidence.] Using Eqgs. (17) and (16), we per-
formed numerical computations of {(Ar) for the conditions
of Hebden’s experiments. By the substitutions given in Eq.
(12), we then calculated the corresponding mean values of
excess transit time, (At), and used the latter to compute
the spatial resolution according to Eq. (15). Open circles
shown in Fig. 4 are the results of these computations. We
note that when integrating over only short excess transit
times the value of (At) is very close to the maximal value
of At in the time window, whereas for long integration
times the mean value tends to the asymptotic value ob-
tained for dc illumination (indicated by the arrow in Fig.
4). The points marked by (*) are Hebden’s data. The
overall agreement seen in Fig. 4 demonstrates that our
theoretical methodology is a useful way to examine the
spatial resolution for time-resolved imaging. Aside from
the inherent approximations in our theory, the small dis-
crepancies between theory and experiment may be due to
uncertainties in the reported optical parameters of the
phantom, or noise in the edge response functions. As
pointed out in Ref. 21, some discrepancy also is likely due
to the finite boundaries of the experimental media, partic-
ularly for larger values of the gating time.
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F1G. 5. Expected resolution at the midplane of a 51-mm-thick transillu-
minated breast as a function of detected intensity, determined for both
uniformly adipose (dashed lines) and uniformly grandular (solid lines)
tissue, for three different wavelengths (l: 610 nm; @: 800 nm; A: 1250
nm). For these wavelengths, the values in mm~' of the optical coefficients
were for adipose tissue: X, (0.05, 0.01, 0.02); 2¥*(0.9, 0.8, 0.7) and for
glandular tissue: X, (0.2, 0.02, 0.08); =* (1.8, 1.2, 0.7).

The latter methodology also can be used to compute the
spatial resolution when the medium is absorbing. By using
the mean excess transit time, {(A?), in our calculation, we
succeed in obtaining an appropriate weighting, over the
gated time windows, of the line spread functions at mid-
plane. Using the calculated mean transit time and Eq.
(14), it also becomes rather simple to estimate resolution
as a function of detected intensity for time-resolved imag-
ing [cf. Eq. (17)] as the transit time is decreased. The
ability to compare detected intensity with resolution for a
variety of tissue models becomes critical since we have
shown theoretically that any resolutions can be achieved
by choosing a small enough Ar. As shown below, the
amount of light collected decreases much more rapidly
than the width of the LSF.

C. Inferences regarding breast imaging

We now assess possible limitations on breast imaging
predicted by our theory. Reported optical parameters for
normal adipose (fat) and normal human breast glandular
tissues are used in our equations to compare resolution and
detected intensity at three wavelengths for a 51-mm thick
(compressed between parallel plates as for mammogra-
phy) breast.

In a recent study Peters ef al“" reported the optical
parameters (scattering and absorption coefficients) of ex-
cised adipose and glandular breast tissue over a range of
wavelengths from visible to infrared light. Using these val-
ues, we have computed the expected resolution as a func-
tion of detected intensity for homogeneous adipose and
homogeneous glandular tissue at three different wave-
lengths (A =610, 800, 1250 nm). Results are presented in
Fig. 5. Because adipose breast tissue has an approximately
constant effective mean free path ) (Z¥) ~1 of about 2 mm
for A within the range 600 to 1250 nm,?* for the same
integration time nearly equivalent resolution is obtained,
almost independently of wavelength. However, the inten-
sities are dependent on the absorption of light by hemoglo-

l.24
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bin (where @410 nm > 300 nm > 91250 nm) and are dramatically
reduced (3-5 orders of magnitude) at 610 nm for normal
tissue blood concentrations. If one requires a time-resolved
imaging system to operate at a given intensity (e.g., at a
detection limit of 10~!%), the imaging resolution for adi-
pose tissue, especially for short excess transit times, would
necessarily be worse when the tissue absorption is higher
(e.g., 5.3 mm at 610 nm versus 3.6 mm at 1250 nm, as seen
in Fig. 5).

In contrast, glandular breast tissue exhibits a strong
wavelength dependence of the scattering cross section for
values of A between 610 and 1250 nm.2* Consequently, as
seen in Fig. 5, the resolution curves for the various wave-
lengths are quite dissimilar. The extremely large loss in the
detected intensity with decreasing wavelength, which is
particularly evident at higher resolutions (e.g., for
FWHM=3 mm: ~ 107 at 610 nm; ~10~% at 800 nm;
~10~'® at 1250 nm), can be ascribed mainly to the in-
crease in scattering at short wavelengths.

Thus, the resolution of a totally absorbing object em-
bedded in the middle of an optically homogeneous slab can
be significantly improved relative to dc measurements by
choosing shorter photon transit times [see Fig. (4)], but at
the cost of a dramatically lower detected light level. Simi-
larly, although an increase in scattering cross section will
theoretically increase the resolution obtainable for any
given time gate, the associated decrease in the detected
light level will be dramatic, especially at short delay times.
If we wish to detect a local abnormality by its optical
properties, the contrast of the object relative to its back-
ground must be sufficiently large. The largest contrast for
an abnormality will occur at wavelengths where either its
absorption coefficient is much larger than, or where its
scattering cross section is very different from, that of the
surrounding tissue. Yet if we choose wavelengths in the
near infrared where the tissue absorption is not strong, it is
unlikely that a small abnormality will have a high enough
absorption relative to the background to give much con-
trast.

Clearly, as one changes the position of the probe beam,
intensities and resolutions can differ widely if the optical
parameters of the bulk media vary (e.g., due to varying
amounts of adipose and glandular tissue). Hence, deep tis-
sue imaging will be sensitive to the fact that most tissues
are not optically homogeneous even over short photon
paths. Although breast tissue of young, nonobese women
may be overwhelmingly glandular, there is a general trend
with age (as well as multigravidas, post menopause, or
obesity) for the replacement of glandular with adipose tis-
sue. Thus, x-ray contrast mammography of women over 40
shows tremendous large scale (on the order of cm) spatial
variations resulting from adipose replacement of glandular
tissue,” which complicates the task of detecting abnormal
inclusions. Such heterogeneity is likely to cause even
greater complication in optical mammography, given the
latter’s inherently poorer resolution.

In Fig. 6, we compare the ratio, for adipose versus glan-
dular breast tissues, of the predicted optical intensities
transmitted through 51 mm tissue. For red/near infrared
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FiG. 6. Log of the ratio of the intensity detected through 51 mm of
adipose breast tissue to that of 51 mm of glandular breast tissue as a
function of excess transit time (At¢) for three wavelengths. For two wave-
lengths (610 nm: @; 800 nm: dashed line); the scattering lengths are
significantly less for glandular tissue than for adipose, whereas at 1250 nm
(&) the scattering is the same in adipose and glandular tissue.

wavelengths (610-800 nm), the significantly smaller scat-
tering cross sections for adipose tissue lead to dramatically
higher transmitted light at early times. Thus, the afore-
mentioned intrinsic spatial heterogeneity of normal breasts
of women over 40 (Ref. 25) is likely to create tremendous
spatial variations in transmitted light, especially when the
time gate is shortened to optimize optical resolution. These
intensity variations are much greater than could be ex-
pected from optical changes (due, e.g., to blood content)
in small volumes (diameter <6 mm) of abnormal tissue,
and would appear to preclude reliable early detection of
tumors. Interestingly, at these red/near infrared wave-
lengths, the ratio of transmitted light intensity of adipose
to glandular tissue decreases as the integration time ap-
proaches that of dc measurements. The extreme difference
in early-time intensities, shown in the top two curves of
Fig. 6, is principally due to the significant differences in
scattering cross sections between adipose and glandular
tissue at those wavelengths. This demonstrates that scat-
tering differences in tissues will have even greater effects on
time-resoived images than on dc transillumination.
However, at A=~ 1250 nm the effective scattering cross
sections of normal adipose and glandular tissue are approx-
imately the same.?* In this case the logarithm of the trans-
mitted intensity ratios depends only on the product of the
absorption difference and the tramsit time (i.e., path
length). Thus the background spatial variations of trans-
mitted intensity due to normal compositional variations
are smaller at shorter delay times. In such cases (where the
tissue essentially is homogeneously scattering), time-
resolved imaging may permit detection of abnormalities if
their contrast (attenuation relative to background) is suf-
ficiently greater than the spatial variations in absorption
attenuation for the normal breast over that path length. At
1250 nm there is little likelihood of strong absorption dif-
ferences between abnormal and normal tissues. Therefore,
such imaging will be possible only if the abnormality ex-
hibits either dramatically higher (if fibrotic or calcified) or
lower (if a cyst) scattering than does normal tissue.
Finally, we note that for the case studied here, of a small
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source and detector, the width of the LSF decreases dra-
matically as one nears the surfaces. Thus small features
with high contrast near either surface (e.g., superficial
veins or tumors) are much more likely to be sensed than
deeper ones. When spectroscopic imaging is desired, in-
creasing contrast due to absorption may be more critical
than increasing resolution through time gating. In such
cases, dc measurements at wavelengths where the absorp-
tion is high (e.g., at 600 nm due to blood) may provide the
best balance between contrast, intensity, and resolution.

1V. SUMMARY AND DISCUSSION

This work provides an analysis of the LSF of a photon
pulse as it passes through the midplane of a slab of thick
optically turbid media. The standard deviation of a Gauss-
ian fit to the expression obtained for the LSF is used as a
criterion to define the spatial resolution of a time-resolved
imaging system. Our results suggest that the spatial reso-
lution is proportional to the square root of the excess tran-
sit time, At, of the imaging system and inversely propor-
tional to the square root of the scattering cross section, X,
of the medium, as presented in Eq. (14). The theoretical
findings have been compared with actual experimental
data,”! with which they are in quite good agreement.

Our theoretical expressions for optical resolution and
detected intensity can be used to estimate performance of
any time-gated or dc optical imaging of turbid media for
which the bulk scattering and absorption parameters are
known. We have shown that, in optically homogeneous
tissues, time-gating experiments can improve the spatial
resolution achieved with an imaging system. Although
there is a tremendous loss in the detected intensity for
short gating times and thick tissues, one might overcome
this difficulty by averaging measurements over many pulses
for long enough periods.

For a given tissue thickness, the intensity of a time-
gated image is greatly increased as the optical thickness N
[expressed in terms of (2;")_1] is reduced. Hence, time-
gated imaging of thick tissues such as the human breast is
more practical for longer wavelengths (i.e., near infrared),
for which smaller values of 2¥ result in lower optical thick-
nesses. dc transillumination exhibits the poorest resolution
when absorption is low, in which case the ratio of the
excess path to the direct path, (An)/N, is relatively large.
Therefore, in cases of low tissue absorption (i.e., when
using near infrared light), time-gated imaging will improve
image resolution relative to dc transillumination. However,
due to weak intrinsic biological absorption, one’s ability to
discern the low contrast due to absorption within a small
(e.g., 6 mm) tissue abnormality is problematic when using
near-infrared wavelengths; even fivefold increases in the
dominant absorbing species (e.g., hemoglobin) will not re-
sult in a large change in the detected intensity. Time-
resolved imaging that relies on short, less diffuse paths will
be less sensitive to absorption changes than dc imaging, but
more sensitive to large scattering changes associated with
voids/cysts (low scattering) or desmoplastic fibrosis (high
scattering).
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Over distances of but a few centimeters, human tissues
unfortunately exhibit optical heterogeneity deriving from
normal compositional variations. These differences (such
as the large scattering differences between adipose and
glandular breast tissues when A is in the range of 600 to
800 nm) can lead to variations in detected intensities of
many orders of magnitude. Hence, identification of small
abnormalities within normal ‘“heterogeneous” tissue be-
comes very difficult, even when the optical properties of the
abnormality differ markedly from those of the surrounding
tissue. For breast screening, we have shown that a time-
resolved measurement is most likely to be useful when the
scattering cross sections of normal tissues are quite similar.
Although the exact relationship between the ex vivo thin
tissue data given in Ref. 24 and the absorption and scat-
tering values for in vivo tissue yet needs to be established,
existing ex vivo data®® indicate that adipose and glandular
tissues scatter similarly and absorb weakly at 1250 nm. In
this case small tissue abnormalities also are unlikely to
absorb strongly, so any significant image contrast would
have to arise from scattering differences between the ab-
normal and normal tissues.
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